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ABSTRACT   
 
This report delineates a number of ways in which the results of numerical induction models, 
which aggregate lower level measures into meta-measures for decision making, can be 
unnecessarily compromised. Examples of numerical induction models include complex models 
for performance evaluation, measures of effectiveness synthesis, and for strategic decision 
analysis. A framework is proposed for identifying different types of modelling uncertainty that 
may be present and several of these uncertainties are discussed in detail. Some popular decision 
analysis techniques are also analysed highlighting any features that may introduce unnecessary 
uncertainty into the results. The purpose of describing these potential pitfalls is to reduce the 
structural uncertainty forms that may be unwittingly added to the uncertainties that already exist 
in the input information leading to outputs that are more meaningful. More meaningful outputs 
should then naturally result in improved decisions when such models are applied to Defence 
problems. 
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Structural Uncertainties  
in Numerical Induction Models     

 
 

Executive Summary    
 
 A wide variety of conceptual models can be classed as numerical induction models 
that synthesise lower-level information into higher-level numerical information. In 
general, such induction models are used for strategic decision analysis, complex system 
reliability or vulnerability analysis, and cost/benefit/risk analysis. An important 
characteristic of these models is that their results cannot be definitively validated, and for 
this reason, it is important to be aware of the uncertainties that are inherent in the output 
numerical values. This report identifies a range of uncertainties that may be inherent in the 
cognitive structure of the model, as well as in the computational methods applied. Overall, 
this category of uncertainty can be termed “structural” uncertainty, in contrast to the 
intrinsic forms of uncertainty inherited by the information elements that a model 
processes.  
 
 Initially a schema of multiple levels of uncertainty is defined for the purpose of 
identifying the various mixtures of uncertainty in decision analysis techniques. Using this 
schema various forms of structural uncertainty in some common decision theoretics are 
identified, as well as the concomitant limitations they can impose on the modelling 
outputs. One common complication in complex problems, which prevents the use of linear 
information aggregation methods, is the presence of information interdependencies. For 
this reason, several types of interdependency that may exist between information elements 
relating to the different facets of a model are also described. As minimum requirements for 
the selection of an adequate information aggregation technique, some aggregation axioms 
are proposed. Aggregation operators are then discussed of two categories: those that are 
functions of individual information elements and those that are functions of sets of 
information. Operators of the second category are suggested to be more appropriate for 
capturing aggregation non-linearities that are present in sets of interdependent 
information. 
 
 With a clear awareness of the structural uncertainties that can unwittingly be invoked in 
a numerical induction model, an analyst may increase the value that is added to the input 
information and embed more meaning in the model outputs by choosing techniques 
which minimise these potential uncertainties. Improving the quality of such modelling 
outputs would then lead to improved solutions to the complex Defence problems being 
addressed by this type of model. 
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1. Introduction 

Complex decision problems are often modelled by decomposing coherent aspects of the 
problem into successively smaller elements. This has been called the “divide and conquer” 
modelling approach. Analytical inputs are then assessments, quantitative or qualitative, of the 
value, performance, or some contribution of the elemental components to the overall problem 
or system. Subsequently, these elemental assessments need to be aggregated into higher level 
measures as are associated with the higher level concepts. This type of decision analysis may 
be used to compare different decision alternatives, or alternatively, the model may simply 
represent a complex system and the overall measure be used to assess some kind of 
behavioural performance. In Defence such models may be applied to a broad range of 
problems including capability evaluation, capability planning, military operations measures 
of effectiveness, system reliability, or performance of a system or system of systems. 
 
A wide range of techniques have also been developed to facilitate the aggregation of the 
elemental information inputs, and several of the most common methods are discussed in this 
report. However, some techniques tacitly embed limiting assumptions and may also 
incorporate steps that are fanciful and difficult to mathematically justify. When important 
decisions are based on this type of model it would seem that the model and its techniques 
should be an adequate fit to the actual characteristics of the problem. Any misfit to the 
problem characteristics, or inexplicable operations, or unreasonable assumptions, would then 
increase the level of uncertainty surrounding the results.  
 
The objective of this report is to raise the level of awareness of analysts to these different types 
of modelling uncertainty so that overall model uncertainty may be minimised as much as 
possible. To this end a conceptual framework and uncertainty typology is presented by which 
to identify the pitfalls which could compromise the value and usefulness of model results. 
This is particularly relevant to those Defence models which are composed of many abstract 
concepts and where there may be loose couplings as indeterminate inter-dependencies 
between elements. For convenience, the term “numerical induction” will be adopted to 
describe the general type of divide and conquer model addressed by this report. 
 
Section 2 first provides a general overview of the inductive process. Section 3 describes 
various levels of modelling uncertainty and outlines the foundations for the typology of 
uncertainty sources that this report is based upon. Section 4 next examines the different 
structural forms of uncertainty resulting from the form of the conceptual model and different 
kinds of inter-relationships that can exist between its elements. Subsequently, Section 5 
discusses various aspects of information aggregation in complex system models. Section 6 
then illustrates how some structural types of uncertainty may be intrinsic to a decision 
analysis technique, and identifies some of these uncertainty forms in several common decision 
theoretics.  Finally, Section 7 outlines some general areas where structural uncertainties may 
compromise the results of Defence analytical models. 
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2. Overview of the Inductive Process 
 
Inductive processes map from particular instances to a general proposition. On the other 
hand, deductive processes map from general propositions to the particular, usually by feeding 
particular instances into rules, principles, or hypotheses, and deducing conclusions. In 
general, the term "induction" usually implies "logical" induction where the mapping proceeds 
through logical reasoning of one kind or another. An example of logical induction is where a 
general mathematical expression is derived for the sum of numerical series based on an 
observed pattern in a small part of the series. There are a number of logical induction variants 
and some of these will now be briefly summarised. These summaries have been extracted 
from [39] where a more detailed discussion of induction and its relevance to the scientific 
method can be found. 
 
Naïve Induction 
This is the oldest form of logical induction and it assumes that the process of gaining 
knowledge commences by collecting observations based on experience. Induction then 
proceeds from singular statements about particular instances to generalisations about all 
events of a certain kind at all places and times; as exemplified by the generation of scientific 
theories based on a compendium of observations. However, a number of criticisms have been 
levelled against naïve induction. Perhaps the major criticism is that with this somewhat ad 
hoc approach there is no guarantee that contradictory facts or exceptions will not appear 
sometime in the future. Thus, it can only result in a tentative level of truth, and it is said to be 
naïve because it relies heavily on the inductive method itself. 
 
Sophisticated Induction (Logical Positivism) 
This form of induction evolved from the latter half of the nineteenth century as a result of the 
previous criticisms. Its main assumption is that knowledge can be derived from experience as 
distinct from observation. As stated in [39]: “scientific theories and laws are not the simple 
summation of individual propositions. Rather, theories are an axiomatic network of 
statements from which singular propositions can be derived, and subsequently verified.” This 
describes modifications to the fundamental structure of knowledge, and from this viewpoint 
knowledge is primarily a basis for making predictions. It is a more flexible reiterative 
procedure where induction results in a generalisation, a hypothesis is then proposed based on 
the generalisation, predictions are validated by experiments or observations, and 
modifications to the original generalisation (theory) are made if necessary by inductive 
inference. The main criticism of this approach is that the verification of a theory requires 
statements to be made such that they can be confirmed or otherwise. Unfortunately, abstract 
constructs and ideas cannot always be so stated, and in these cases, the reiterative procedure 
ceases and the method falters. 
 
Popper's Falsification 
Karl Popper around 1959 introduced a variant to the above Logical Positivism, known as the 
inductive-hypothetico-deductive method. Rather than seeking constant affirmation of a theory, 
the objective is to constantly test or expose theories to refutation in order to cull the less robust 
ones. From this viewpoint no theory can be considered to be absolutely true, and the type of 
observations that are required are determined by the theory itself rather than by a hypothesis. 
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The objective of falsification is to reduce ambiguity in scientific knowledge by elimination 
rather than inclusion, and the growth of knowledge is an evolutionary process where new 
theories constantly absorb old theories. From this viewpoint, observations are considered to 
be fallible and cannot be relied upon to confirm theories. However, one problem with this 
approach is that no theory can be absolutely falsified because of the effect of auxiliary 
assumptions, as well as the effect of variations in initial conditions (a problem also identified 
in chaos theory). 
 
Post Positivism (Current Inductive-Hypothetico-Deductive Method) 
The current state of the scientific method can be considered as a loose mix of tenets and 
principles of scientific inquiry. It is a pluralism of ideas under which there is no coherent 
methodology. Nevertheless, theory development continues to be the foundation of the 
scientific method without which no research objectives could be achieved. 
 
The main purpose of introducing the brief descriptions above of the scientific application of 
logical induction, is to indicate that the results of applying the inductive process are generally 
associated with various kinds of uncertainty, and that the intent should be to minimise the 
uncertainties within the modelling process as much as possible because the results cannot be 
absolutely validated. Some examples of logical induction that can be found in the field of data 
mining are algorithms used for decision tree or rule extraction (induction) from large amounts 
of data. Another example is the application of a backward induction process in a sequential 
game (or decision tree) to find one (but not all) equilibrium path for determining optimal 
decisions at nodes within the acyclic decision graph. 
 
Numerical Induction 
With respect to the numerical integration of behavioural measures, the psychologist Anderson 
[5] in 1981 noted : 
“Integration theory has operated primarily in the inductive mode whereby generalisations are sought as 
emergents from experimental analysis”  and also, 
“Inductive theory views science not as formalised knowledge, but as living enquiry.” 
 
In a similar spirit this report will apply the term “numerical induction” to mathematical 
models which synthesise sets of numerical measures into more global aggregate values for 
decision making. This type of measure aggregation will be considered as an inductive process 
meaning from the many to the singular. Frequently, such inductive processes proceed through 
multiple levels guided by the conceptual model, rather than by logical reasoning. However, 
the distinction between deductive and inductive processes is not always so clear, especially in 
models where measures are propagated across a model.  
 
Some models may possess degrees of both deduction and induction. For example, the so-
called "backward induction" process sometimes applied to sequential games [1] could be 
viewed as a deductive process because it is driven by a set of propositions, or rules, which 
guide the selection of a path from many alternatives. Thus, the procedure for decomposing 
the global measure (maximum gain) into its component measures is not simply numerical 
induction reversed. And as there are always doubts about the absolute validity of the results 
of logical induction, there may also be doubts associated with the results of any numerical 
induction model. In this case, the doubts result from the imperfect nature of the cognitive 
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models which are, after all, only simplifications of the world. The relative degree to which a 
model simplification reflects the real problem can be viewed as a function of the following 
factors: 
 
• The finesse with which the key features and characteristics of the problem are identified. 
• The nature of the conceptual variables defined to characterise the problem. 
• The completeness of the set of conceptual variables. 
• The assumptions that the structure of the model is based upon. 
• The structure of the conceptual model itself. 
• The information synthesis mechanisms and their assumptions. 
• The finesse of uncertainty representation. 
• The adequacy of uncertainty management within the induction process. 
 
Inadequacy or a deficiency in any one of these factors may severely limit the meaning of the 
induced numerical values to the extent that they may not be able to provide any useful 
information about the real-world problem. Anderson [5] has also discussed in some detail 
various problematic issues confronting the integration of information in numerical induction 
models, as have some other authors also [39,60]. For this reason, this report aims to highlight 
how deficiencies in these areas can unwittingly be introduced into many common numerical 
induction applications. Even the most obvious deficiency of applying an inappropriate model 
to a problem, where the model features do not match the problem characteristics, is not 
infrequently encountered. Moreover, there are a variety of other more subtle pitfalls that can 
decrease the usefulness of numerical outputs and these potentially limiting factors may not 
appear to be very important because they are so basic and fundamental. Increasing the 
mathematical and algorithmic complexity of a model is also frequently assumed to be the best 
way to increase the usefulness of a model.  
 
For these reasons, this report discusses a range of fundamental considerations that can impact 
on the selection of conceptual modelling methods, such as the basic cognitive form and 
information synthesis methods.  
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3. Levels of Uncertainty in Induction Models  
 
The adoption of a conceptual model for computational analysis of a problem imputes several 
levels of potential uncertainty (U). These uncertainty levels fall into two main categories: 
uncertainty forms within information elements, and uncertainty forms in the conceptual 
model and its computational techniques, which are here termed the structural uncertainties of 
the model. The various forms of uncertainty that may be present within information elements 
are outside the scope of this report, but are examined in an accompanying report [93]. 
 
This report will propose and adopt the following framework or typology of U levels for the 
purpose of identifying the various types of U that may be present in a model. From these 
definitions for levels of U, higher numerical values actually represent lower levels or more 
granular forms of uncertainty. As stated above, the U levels can be grouped into two main 
classes: the first class is associated with the inherent model structure and its mechanisms 
(Levels 1-4), and the second class concerns the U introduced by the sets of data/information 
that is processed by the model (Levels 5-6).  
 
3.1 Levels of Modelling Uncertainty  

Level 1:  Uncertainty in Objective or Problem Definition -- 
Uncertainty of the purpose of the analysis may be related to mistaken perceptions, confusion, 
lack of information, or complexity. Personal factors such as experience, skill and bias can 
influence the cognisance of a problem and some analytical methods such as personal construct 
theory, cognitive mapping or the Soft Systems Methodology, may assist in consolidating the 
problem definition and variable identification. This level of U may also be invoked when a 
concept used to describe a problem is given a different interpretation by different individuals.  
 
Level 2: Uncertainty in Model Conceptualisation -- 
At this level a conceptual model is adopted as the computational framework. A range of 
questions must be answered to define the broad characteristics of the model and fit it to reality 
in an adequate manner. Such considerations are: 
What paradigm :    Single or multiple models?  Random variables or not? 
What structure:  Where are the boundaries? How detailed and what model granularity? 

Hierarchical or complex system inductive model? 
 
Uncertainty can arise at this level if the choices made to answer these questions are inept and 
do not fit the problem characteristics with an adequate degree of verisimilitude. An example 
of U introduced at this level is when a probabilistic inferencing model is adopted where the 
characteristics of the problem would suggest that an inductive type information integration 
model would be more appropriate for decision making. Although it may not always be clear 
as to what represents an “adequate” fit, and because there may also be multiple fits that are 
adequate,  there can still be cases of greatly oversimplified models based on unreasonable 
assumptions as will be discussed in Section 3. 
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Level 3: Uncertainty in Computational Macro-Structure -- 
This level refers to the U introduced by major computational components of a model such as 
the inferencing or clustering techniques, the type of nodal squashing function in a neural net, 
or the information aggregation procedures in numerical induction models. Section 5 will 
discuss non-linear information aggregation requirements for certain types of systemic 
complexities, while Section 6 will identify U forms that are introduced through the methods 
used in some popular decision analysis theoretics. 
 
Level 4:  Uncertainty  in Computational Micro-Structure and Parameters– 
This level refers to the U introduced by analytical method components such as arbitrary 
parameters as in squashing function gain and bias in the fuzzy cognitive mapping technique, 
aggregation optimism/pessimism parameters in some aggregation operators, or the prior 
conditional probabilities in Bayes Nets. Some U implications of arbitrary parameters are also 
discussed in Section 6 in relation to normative decision theoretic models. 
 
3.2 Levels of Information Uncertainty 

Two additional levels of U pertain to the individual information elements themselves and the 
set of information elements available. 
 
Level 5: Uncertainty in Sample Evidence -- 
Quantity -   the amount of information affects measure estimation. 
Quality -   conflicting information in a sample also affects estimation. 
 
Level 6: Intrinsic Uncertainty within Information Elements--   
   This is U inherited from variable definition and/or measurement. 

A qualitative concept associated with a variable may be inherently vague, and 
measurements pertaining to any type of variable may be approximate, 
subjective, or indirect.  

 
The above six levels of U are the broadest categories of U and have been defined in this report 
to facilitate the identification of the different sources of U in a model. The levels of U which 
are the primary focus of this report are Levels 1 to 4 which cover U forms within the structure 
of a model and its computational techniques. 
 
Level 5 U (the collection of data elements) and Level 6 U (due to conceptualisation and 
measurement aspects of variables in a model) are forms of U induced by elemental 
information aspects. These two levels of information U are addressed in some detail in an 
accompanying report [93] where a new approach is presented for representing hybrid 
combinations of U in sets of information elements, as well as methods for measuring the 
aggregate U of the hybrid U combinations. Applications of the proposed methods are also 
demonstrated in that report. Vague variable definition and/or inexact measurement of a 
variable’s property may lead to what will be called “soft” information in this report. This term 
does not include probability estimates derived from a statistically sufficient sample of data, 
but does include subjective probability estimates derived from a statistically insufficient 
sample of data. 
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4. Structural Uncertainty in Models  
 
4.1 The Problem Definition 

Broad conceptual models as abstract approximations of reality provide the frameworks for 
integration operations in numerical induction computations. However, the fitness of a model 
to the problem characteristics can greatly influence the quality of the output [97]. For this 
reason, the mental model adopted should be such that it enables the complexities of the real-
world problem to be captured and adequately addressed in computations. Generally 
speaking, models may be formulated by human assignment or by automatic data analysis. 
The success of both approaches to model formulation depends on the choice of suitable 
knowledge representation schemas. The choice of concepts for model variables is also of 
fundamental importance. Categorisation techniques [65] may be used to address the problem 
of determining the "best" degree of detail (or abstraction) to yield the most useful model 
outputs. On occasion, small world, local problem models are also extended to approximate 
large world problems when the dimensions of those problems are unknown [53]. In recent 
times, attention has also been directed [20] towards the automated formulation of models such 
as decision tree induction, which is often based on the notion of Occam's Razor whereby the 
simplest explanatory representation is the best. However, many difficulties prevail and the 
validity of Occam's assumption has also been questioned [95]. This section will focus only on 
human assigned models, where the key problem is to define a numerical induction model and 
its computational mechanisms to capture to a sufficient degree the real-world complexities in 
the problem domain.  
 
4.2 Conceptual Models for Information Synthesis  

Several types of models will now be described that may be used to transform input 
information into output numerical values of interest. A loose interpretation of numerical 
induction is adopted for some of these models which do not necessarily transform inputs into 
more generalised information, but rather update state values within the model. 
 
4.2.1 Networked Nodal Models 

Network type models may propagate state changes in variables through a web of associative 
influences between variables. Alternatively, the nodes may not have attributes with state 
values and only be routing points for flows of information as in communication system 
models.  
 
4.2.1.1 Acyclic Models 
This type of network model does not allow feedback loops so that influence links are uni-
directional between parent and children nodes. Thus, the possible associations are 
constrained. 
 
Examples:  A Bayes Net where the nodes represent random variables which are related to 
parent nodes by sets of conditional probabilities. The nodal states are thus probabilistically 
inferred. 
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An Artificial Neural Net (ANN) where an input state vector is transformed into an output 
state vector through layers of intermediate nodes, by passing weighted sums of input 
activations through non-linear squashing functions at each node. The ANN learning mode of 
operation recursively iterates through both directions to optimise weights for given 
input/output data sets. 
 
4.2.1.2 Cyclic Models 
In this type of network model feedback loops (reinforcing or inhibiting) are allowed enabling 
complex system behaviour to be emulated. A temporal dimension is necessary to explore the 
dynamics of the complex behaviour, which may tend to chaotic, fixed cycle or fixed point 
patterns. Frequently, such models are only used to estimate states of key variables in the near 
future. These models are not very suitable for the form of soft information synthesis that is the 
subject of this report. When they are applied to such information synthesis problems, the 
aggregate value is sometimes considered to be the steady-state value of a key node after 
perturbations that were initiated by an input set of information have ceased.  
 
Examples: 
• System Dynamics [83] models where key variables are quantitative “level” variables that 

are influenced by exchange rates, which may in turn be influenced by binary 
state qualitative variables. The use of qualitative variables within these models is 
rather restricted since the primary propagation technique is through differential 
equations and the division operation between different qualitative variables 
whose measures are on interval scales is not admissible.  

    (This will be discussed further in Section 5.3.3.) 
 
• Fuzzy Cognitive Maps [49] are cyclic models where variables are qualitative so these 

models are suitable for modelling the dynamic behaviour of abstract strategic 
situations. 

 
• Saaty’s [76] proposed Analytic Network Process (ANP) for decision making with 

interdependencies is another example of a cyclic network model. 
 
4.2.2 Multi-Tier to Global Variable Models 

This type of model is closer to a numerical induction model because its function is to condense 
low-level information into more generalised global forms of information. No feedback is 
allowed and parent-child influences are uni-directional. 
 
4.2.2.1 Hierarchical Models 
This is the most common type of model used for decision analysis. Strictly independent lower 
level information is hierarchically aggregated in a linear manner into higher-level decision 
values commonly using weighted additive operations.  
 
Examples: 
Many multi-attribute decision techniques including the Analytic Hierarchy Process [74] and 
probabilistic decision trees. 
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Figure  6:   A Multi-Tier Model of Diverse Decision Facets 

 
4.2.2.2 Non-Hierarchical Models 
This type of multi-tier model does not require strict independence of elements within or 
between levels, and different child nodes can share the same parent node. Such non-
hierarchical information structures are particularly suitable for modelling abstract concept 
granulation and composition, as required in the analysis of complex domains or decisions, by 
the successive combination of diverse lower level information between which indeterminate 
interdependencies may exist. In Figure 6, the loosely coupled elements within the different 
facets or subsystems are grouped within the ellipses.  
 
Examples: A special type of Bayes Net where multiple nodes condense into a small number of 
higher level nodes. As previously noted, care must be taken in such probabilistic models that 
the higher level nodes are true random variables and are not concepts that are 
deterministically induced from lower level node states.  
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Non-hierarchical models may also consist solely of deterministic variables (without 
probabilistic inferencing) and in this case the intrinsic nature of the variables determines what 
information aggregation procedures are appropriate. If the variables represent stand-alone 
entities that are not merely abstractions of lower level information, then weighted aggregation 
may be feasible whereby weights represent the strength of the influence of a parent on a child. 
However, additive weighted aggregation would assume that the parents are all independent, 
which is not true in fact because some may be influenced by common elements due to cross 
influences. Any U introduced by assuming independence would be Level 3 U concerning the 
computational macro-structure, and whether or not this would produce very misleading 
results would depend on the characteristics of the individual problem. 
 
If the variables are not stand-alone concepts, but are abstractions of lower level information as 
are many decision analysis models, special non-additive information synthesis procedures 
may be required to capture the forms of dependency that may exist between the abstract 
concepts (as will be discussed further in Section 4.3). It should also be noted that the 
multiplicative aggregation technique that has been proposed by Keeney and Raiffa [45], 
although not additive, does not address the type of non-linearities due to interdependencies 
that will subsequently be described. Simply speaking, multiplicative models can be described 
as “not-additive” rather than “non-additive”. In other words, their primary purpose is not to 
capture non-compensatory aspects, but rather to capture implicit multiplicative relationships 
as found in probabilistic laws for example. 
 
4.2.3  Geometric Models 

It will now be suggested that for understanding multi-tier models with interdependencies, the 
metaphor of composite geometrical structures may facilitate the visualisation of non-linear 
interactions in measure aggregation. One example of such geometric metaphors are complex 
globular bubbles as in Figure 7. Whereas multi-tier models help to identify where cross 
inheritance relationships exist, geometric models can help to get a feel for the non-linear 
quantitative relationships between measures. Although it may not be possible to visualise the 
whole problem in such a way, such a conceptualisation may help to understand the sub-
component non-linearities. For example, the composite bubbles in Figure 7 could represent 
global variables whose surface area can be observed to be a non-linear function of the 
different component bubbles whose surface area represents their individual measures.  
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Figure  7:      Globular Geometric Models 

 
 
4.3 Interdependency Between Information Elements 

Four potential types of information element interdependency will now be described which 
would indicate that non-linear information aggregation methods are required in the 
numerical induction process. 
 
4.3.1 Causal Interdependency 

Causal influence is the most familiar form of interdependency where the value(s), or state(s) 
of one or more elements, determines to some degree the value of the dependent element. 
These may be due to physical or abstract relationships between conceptual entities. Network 
models are frequently used to process information through such a network of relationships in 
a step-wise behavioural analysis, and learning algorithms applied with input/output training 
sets to determine causal link strengths. Alternatively, link strengths can be input initially and 
used to determine state values of element nodes. Network models with feedback can also be 
used to understand the dynamic behaviour of a system. One dynamic causal influence 
modelling technique is Fuzzy Cognitive Mapping [49] which is suitable for models with 
qualitative concepts. Another dynamic causal influence modelling technique is System 
Dynamics which is suitable for more quantitative concepts in a model.  
 
4.3.2 Systemic Interdependency 

This type of interdependency may exist between elements, or groups of elements, for a variety 
of reasons. But whatever the reason, the combination of information elements or subsets of the 
power set, is non-additive i.e. the integrated sum does not equal the sum (or average) of the 
parts. Systemic information sets may relate to tangible or abstract systems. An example of a 
tangible system is a bicycle with the subsystems: frame, brakes, wheels, gears and accessories. 
An example of an abstract system is the representation of a cost, benefit, risk problem; all 
being interdependent. For systemic information sets, non-compensatory aggregation (to some 
degree) is also desirable because low values of one system aspect cannot be compensated for 
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by higher values of other system aspects, as with additive averaging or aggregation. The 
reason for this is that all aspects (or components) need to be considered, since the system 
consists of the totality or integration of related components (i.e. all components are 
indispensable). In other words, low values represent windows of weakness that can 
jeopardise the behaviour of the complete system. For example, weak brakes endanger the 
performance of a bike when it goes downhill because they cannot be compensated for by a 
very good seat. For this reason, when there are systemic interdependencies information 
aggregation should also reflect the amount of disparity within the set of measures, and non-
compensatory methods should be applied to synthesise a global value. 
 
4.3.3 Associative Interdependency 

Associative interdependency can also exist when there is synergy or redundancy between sets 
of model elements and their measures. In these cases non-additive aggregation is also 
required. One type of associative dependency is also induced when a set of information 
elements are all conditionally influenced by one other factor. This can be called conditional 
independence where the elements are not related themselves, but exhibit some correlated 
behaviour due to all being conditioned by another variable. Similarly, in induction models 
when a meta-variable measure is to be induced from the set of information elements, non-
compensatory integration is also desirable because the meta-value should again be indicative 
of the inconsistency or degree of disparity of the information set. Accordingly, the meta-
variable measure should be decreased with increasing sub-element inconsistency to conform 
to the Principle of Maximum Uncertainty (and conversely the Principle of Maximum 
Information Entropy). An example of associative dependency is where a global performance 
measure is to be induced for a group of people from a set of measures pertaining to various 
individual behavioural characteristics. Such groups of people could be a division of a military 
combat force, or a group of workers in an organisation, and individual behavioural 
characteristics may relate to morale, abnormal actions, accidents, and goal achievement. In 
such examples, the meta-variable may represent the group performance measure, which is quite 
different from a task performance measure that would most likely be based on a set of efficiency 
and effectiveness measures. 
 
4.3.4 Cognitive Interdependency 

The fourth type of interdependency will be termed here “cognitive interdependency”, 
induced when the synthesis of a set of numerical measures aims to emulate the human 
cognitive process. Various behavioural researchers, for example [5], have determined that the 
human assimilation of a set of numbers does not usually occur as with probabilistic type 
averaging. Rather, human evaluation is by searching for a dominant value or the simplest 
pattern in the set. In this way, cognitive interpretation is also influenced by disparities and 
similarity patterns within the numerical set. Zeleny [102,103] has introduced the concept of 
“cognitive equilibrium” for this type of non-compensatory and non-additive assimilation of 
numerical information. One situation where this type of information integration is 
appropriate is the synthesis of diverse expert opinions where an average (simple or weighted) 
may be very different to many opinions because of the effect of one large outlier. Besides 
emulating human cognition, another reason for non-compensatory aggregation of expert 
opinion is that, again, it is desirable to embed information on the disparities present, because 
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the degree to which opposing views are present (discord and polarisation) is meaningful and 
should somehow be reflected in the global value. This type of synthesis cannot be achieved by 
using a variation statistic, nor through any type of generalised compensatory weighted 
averaging. 
 
4.4 Section Summary 

This section has discussed different types of conceptual models and the various types of inter-
relationships and interdependencies that may be present between the components of a 
conceptual model used for numerical induction. It has also been proposed that for the non-
causal types of interdependencies, geometrical models may help to conceptualise the non-
additivity required in the numerical induction process. The following section will present a 
survey of information aggregation procedures including non-additive methods. However, 
modelling the dynamic type of causal dependency is beyond the scope of this report. 
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5. Information Aggregation Techniques  

5.1 Overview of Unconstrained Information Synthesis Techniques 
 
A summary of different classes of unconstrained information synthesis is presented in  
Figure 8.  In this context, the term “unconstrained” is used to differentiate these aggregation 
methods from mathematical programming and other quantitative methods which integrate 
information to determine (optimal) values of decision variables subject to constraints. While 
“synthesis” is here used here as an umbrella term for any method of combining discrete 
information, “aggregation” will specifically refer to the derivation of global measures  for 
variables which may be of qualitative or quantitative definition. Global aggregate measures 
may then represent the property of decision value or utility, or be a measure of a decision 
maker's preference (sometimes called "priority"). Information synthesis may also be 
performed to rank order (partial or complete) a set of alternatives or choices without 
developing any global measures. This is referred to as the Global Order Vector in Figure 8. A 
further type of information synthesis shown in Figure 8 is the propagation of evidence 
through a model as it appears, to update belief values across its state variables. Although this 
type of information synthesis is beyond the scope of this report on numerical induction, a 
wide range of graph-based techniques has been proposed for it [4,64], plus non-graphical 
methods such as the use of the Sugeno fuzzy integral [86]. 
 
An important consideration for any type of information synthesis is whether there is any 
synergy or redundancy in the set of information, both being forms of information 
interdependency. Figure 8 includes examples of methods suitable for information synthesis 
when dependencies are present, as well as methods that are only suitable for independent 
information. Several of these methods will also be described further in Section 6. Furthermore, 
when interdependencies are present, it is important to identify what types of 
interdependencies are present so that an appropriate technique may be selected. 
Unfortunately, it is not uncommon in the literature for overzealous authors to imply that one 
particular method for modelling dependency suits all forms of dependency. This is simply not 
realistic or possible.  
 
5.1.1 Additive Aggregation with Independent Information 

For variables that are measurable, additivity is defined as: μ μ μ( ) ( ) ( )A B A B∪ = + , 
  where A and B are disjoint sets of real numbers and μ is a measure.  
 
Most traditional decision analytic techniques assume information independence and 
additivity, with an expected utility being computed using some form of a generalized mean; 
for example: arithmetic mean, geometric mean, harmonic mean, or one of various families of 
compensatory operators such as the Ordered Weighted Average [99]. All these aggregate 
measures fall in the range [Min, Max]. Some compensatory operators [105] have been used to 
model bias in utility aggregation which can be introduced by a decision maker’s optimistic or 
pessimistic character; in other words, for modelling non-linearities in human cognition. This 
type of dependency is quite distinct to information interdependency. One extension to 
additive mean operators that has many variants is to fuzzify decision variables expressing 
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variable values and weights as fuzzy sets. Generally speaking, fuzzy decision theoretics (as 
well as some others such as ZAPROS [51] and outranking methods [71]) attempt to capture 
the U inherent in the subjective ratings of the decision maker. 
 
5.1.2 Non-additive Aggregation with Information Interdependencies 

As described in Section 4.3 several types of interdependency in a numerical induction model 
may require special information synthesis procedures. Some examples of such techniques that 
have been proposed in the literature are also shown in Figure 8. 
 
For example, associative dependency is present when different combinations of elements have 
special interactions. There may be synergy where the importance of the union is greater that 
the sum of the subsets, or there may be redundancy where the aggregate weight is less than 
the sum of the subsets due to an overlap of information content. There are also two types of 
associative non-additivity: a constant monotonic type of non-additivity which can be 
modelled by the g(λ) measure of Sugeno [86], or a non-monotonic form whereby subsets of 
the power set have composite weights that may not be steadily increasing in addition to being 
non-additive. To implement the non-linear or non-monotonic form of non-additivity all 
weight sets must be known either as input, or derived from analysis of a sufficient data set, 
which also requires some assumptions to be made. In general, the functionals called “fuzzy 
integrals” are useful for the associative type of non-additive information aggregation, as well 
as for the systemic and cognitive forms of interdependency. 
 
Another type of utility interdependency is also shown in Figure 8, which is interdependency 
between the high-level objectives of the problem analysis. This can be viewed as systemic 
interdependency. Carlsson and Fuller [22] have proposed a method to address this form of 
dependency by establishing fuzzy tradeoff functions between the objectives and determining 
an optimal global value that “satisfices” objectives based on a T-Norm conjunctive operation 
on the tradeoff functions. However, this approach requires the definition of a functional 
relationship between objectives and this would be difficult to realise in many situations. 
 
 Besides the global utility forms of information aggregation, the other major form of 
information aggregation shown in Figure 8 relates to synthesis of the decision maker's 
preference information. This type of information synthesis is used in many decision theoretics 
based-on decision makers' subjective preference ratings between alternatives, and across all 
criteria or facets of a problem to combine them into a global set of preference measures for 
alternatives. There are a variety of difficulties confronting methods used to synthesise global 
preference measures and these will be discussed in Section 6. Theoretical examinations of 
generalised non-compensatory and non-additive preference structures can be found in 
[18,19,98]. 
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Figure 8:     Classes of Unconstrained Information Synthesis
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5.2 Overview of Information Aggregation Operators 

This section will discuss some issues concerning aggregation operators as used to synthesise 
elemental information into global measures. 
 
5.2.1 Some Information Aggregation Axioms 

Since aggregation in this report has been defined to mean the development of a global measure 
from elemental information, it may involve other mechanisms besides simple summation. 
And although additive weighted summation is probably the oldest and most common form of 
information aggregation, it is not without some dangers that can limit the value and 
usefulness of its results. In order to avoid these dangers, some practical aggregation axioms 
will be defined for the meaningful aggregation of information measures. In the following 
paragraph “scale type” will refer to the different kinds of scale as discussed in Measure 
Theory [84]: categorical, ordinal, interval, and ratio scales (also discussed in more detail in 
Section 6.3). On the other hand, “scale unit” will refer to the basic divisions on a scale to which 
measures apply. 
 
In general: 
• Measures should have an equivalent scale type i.e. ratio or interval scales. 
• Measures must have compatible scale units: e.g. uniform linear or logarithmic. 
• Operations for the aggregation of measures are limited to the admissible operations for 

the scale type.  
• Any synergy, as positive reinforcement or negative redundancy, existing between 

measures in a model indicates that non-additive information aggregation procedures are 
required. 

 
It should be noted that there are exceptions to some of these axioms within some techniques. 
For example, it is admissible to multiply an interval scale measure by a ratio scale measure 
(i.e. different scale types) because that is not an aggregation operation. 
 
5.2.2 Classes of Aggregation Operators 

A very large variety of aggregation operators have been proposed for the combination of 
information in a model. Summaries of these can be found in [16,29,31,45,47,105]. To aid 
aggregation operator selection, Bloch [16] provides a classification for operators commonly 
encountered in the field of information fusion based on the following behavioural 
characteristics: 

 Context independent constant behaviour 
 Context independent variable behaviour 
 Context dependent 

 
These classes are further subdivided on the basis of partial ordering relationships, plus some 
mathematical properties that may be related to the real world problem. For example, 
idempotence can mean that repeated measuring of already known information will not change 
the previously derived aggregate, and nilpotence can mean that the accumulation of “n” pieces 
of information can lead to the null element as with cascaded opinion passing which depletes 
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the value of the message. Other authors [29,98] note that aggregation operators may be 
classified in another way: conjunctive, averaging (including symmetric sums) and disjunctive. 
However, none of these rather general properties and categories are very helpful for 
identifying a suitable operator to address the previously described interdependencies that 
may be present in a decision problem. For this purpose, two different classes of operator will 
be identified: those which are functions of individual measures, and those which are functions 
of subsets of measures. 
 
5.2.2.1 Operators as Functions of Individual Elements 
Most operators that have been proposed are functions of individual measures. Although some 
are non-linear and non-compensatory to a degree, the specification of the non-linearity is 
rather arbitrary. For example, the so-called Zimmermann/Zysno general Compensatory AND 
operator [105] (which is actually partially compensatory), is a parametric function combining 
probabilistic OR (disjunction) that provides the maximum degree of compensation, with 
probabilistic AND (conjunction) that provides the minimum degree of compensation. These 
two expressions are linked by multiplication with a parameter (γ) that determines the degree 
of bias towards the OR direction of maximum compensation. 

1n n

1, 2 n i i
i 1 i 1

h(s s ..s ) s 1 (1 s ) where 0 (s, ) 1
−γ γ

= =

⎛ ⎞ ⎛ ⎞
= − − ≤ γ ≤⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∏ ∏    (1) 

 
While this operator could possibly be justified for modelling the personality bias of a known 
decision maker, it is of little use for modelling the complexities in systemic information, even 
though it is partially compensatory. The same criticism applies to most of the other non-
additive or partially additive [98] operators, which are functions of individual elements since 
they cannot be related to the non-linearities that are functions of groups of elements as 
previously described. Nevertheless, the features of certain problems may sometimes point 
clearly to one of these as an appropriate operator.  
 
5.2.2.2 Operators as Functions of Sets of Elements 
Among the many aggregation operators those which are functions of variables that are groups 
of elements are rare. However, there is one operator among the so-called fuzzy integrals that 
aggregates subsets of information across the power set of elements: the Choquet capacity or 
Choquet integral [25]. In recent years there has been much interest in this operator for multi-
criteria decision making [25,36,37,59]. This functional has the potential to capture most of the 
non-linearities described previously, although there can be some difficulty with its 
implementation, because the power set of weights of the subsets of elements is usually 
required which can be quite large. If the set of information is small, it may be feasible to 
subjectively evaluate the small power set of weights for some types of problem (as in [37] for a 
small set of student exam marks for a few subjects). For this reason, a large proportion of the 
literature on the application of the Choquet integral to decision making has focused on the 
problem of determining, or even optimising, the power set of weights from preliminary data 
analysis. This approach of searching for a unique power set of non-additive weights for a set 
of information not only requires a large data set for training, but also additional assumptions. 
However, in most abstract information synthesis problems, known and validated global 
aggregate values would seldom be available for training since the domain is generally 
hypothetical with aggregates that are impossible to validate. Thus, a different approach is 
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required if the Choquet integral is to be applied for the synthesis of systemic information. This 
author has previously presented such an alternative approach to applying the Choquet 
integral in [91]. 
 
The Choquet Integral has been defined [36] in the following manner for a discrete and finite 
measure space. Let (X,χ,μ) be a fuzzy measure space where μ is the fuzzy measure of the 
power set χ, in the finite space X of all set elements. Sugeno [86] introduced the term “fuzzy 
measure” to describe non-additive weights for subsets of data as opposed to weights for 
individual data elements.  
 
Consider a function f: X → [0,1] where 1 ≥ f(x1) ≥f(x2) ≥ f(x3)... ≥ f(xn) ≥ 0. The Choquet integral 
(C) of the function f with respect to fuzzy measure μ is defined by,  

 ( )
n

1 n i i 1 i
i 1

C  (f(x ),....f (x )) f (x ) f (x ) (A )+
=

= − μ∑  (2) 

where μ(An) = 1, and f(xn+1) = 0 by convention.  
 
In this formulation, f(x) refers to the information element measure (or model facet rating) and 
μ(Ai) is the importance of element subset Ai which is the set of elements where f(x) ≥ f(xi). The 
above expression can also be rearranged to the following form [37, p.143] which is a weighted 
aggregation of values using the marginal increase in element subset weights: 

 C A A f xi i i
i

n

= − −
=
∑ ( ( ) ( ) ) ( )μ μ 1

1

   (3) 

where  μ(A0) =0,  μ(An) = 1 and  μ(A1) ≤ μ(A2) ≤ ... ≤ 1; 
and Ai is the set of elements where f(x) ≥ f(xi).  

 
The global Choquet aggregate (C) may be seen as the first moment of f(x) which is why C is 
sometimes termed the Choquet Expected Value (CEV). Also, by aggregating intervals the 
Choquet integral can address the significant problem of aggregating measures on mixed ratio 
and interval scales, as are encountered in many strategic decision analysis models, because 
that is an admissible operation for interval scale measures. The Choquet integral has also been 
applied to modelling non-linear attitudes to risk [24]. More aggregation difficulties arising 
from measurement scale limitations will also be discussed further in Section 6.3. 
 
5.3 Section  Summary 

In this report the term “aggregation” is taken to mean the induction of global measures. A 
variety of computational approaches to unconstrained information synthesis has been 
summarised, highlighting the difference between additive and the non-additive aggregation 
techniques that are required when there is some form interdependency present in a model. 
Some axioms were also proposed as the minimum fitness requirements to guide the selection 
of adequate operators and computational methods. Finally, the Choquet integral was 
introduced as an example of a non-additive operator which is a function of sets of elements, 
rather then being a function of individual measures as most operators are. It is suggested that 
this feature enables the Choquet integral to capture various non-linearities which are present 
when interdependencies exist between model elements. Another benefit of the Choquet 
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integral is that by aggregating differences it is an admissible operator for interval scale 
measures which should not be individually aggregated. 
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6. Uncertainty in Decision Theoretics  

6.1 Problem Definition 

This section will describe various types of U that may be introduced into the process of 
modelling complex decisions by means of a particular decision theoretic. Uncertainty in this 
context refers to fundamental information limitations on the global measures computed, as 
determined by the adequacy of the computational methods and model fit to the real-world 
problem characteristics. Thus, rough or over-simplified models naturally yield computational 
results with less meaning compared to models that reflect the real-world characteristics more 
faithfully. The notion of Levels of U as introduced in Section 2 will be used to describe the 
different types of fundamental U that may be introduced in a decision theoretic. Most of these 
U levels fall into the class of structural U that is the focus of this report. A multitude of 
decision theoretics have been proposed, and for convenience, some of these will be divided into 
different schools such as multi-criteria decision analysis, multi-attribute utility methods, the 
European school, and the Russian school. (It should be recognised that these are somewhat 
loose categories, and the first two are often considered to be the same.) However, neither the 
complexity of a technique, nor the approach of any single school, enables a method to be 
totally immune to the following theoretical difficulties and accompanying uncertainties. The 
intent of this section is not to explain the details of the many methods that have been 
proposed, but rather to highlight some very basic issues that can limit the value of modelling 
results. 
 
Decision analysis methods have been divided [58] into two main categories: normative 
methods and descriptive methods. Normative methods produce advice for the decision maker 
based on a theoretical model, while descriptive approaches attempt to capture behavioural 
and contextual effects, perhaps with the aid of experimentation. French [34] has suggested 
that the present situation differs from the above dichotomy because many sophisticated 
models contain elements of both approaches. With this understanding, the schools that will 
subsequently be described differ in the degrees to which they attempt to capture cognitive 
aspects and contextual relationships. Howard [40] has also suggested that there are three key 
aspects of a decision problem that help to determine the suitability of a particular technique: 

• the number of factors to consider 
• the importance of the time domain 
• the uncertainties present (types and degrees). 

 
While these aspects may seem to be fairly obvious, the implication is that careful thought 
should be given to each of them at the start of an analysis. Various authors 
[14,21,52,57,60,61,63,81,87,90] have also attempted to compare the behaviour of different 
methods through tests, usually comparing implementation and decision-maker 
comprehension aspects, or consistency of results for diverse sets of simulated element ratings. 
Although some of those results concerning practical aspects are justifiable, conclusions about 
the accuracy of a method's results can seldom be reached due to the difficulty of validating 
any results, or finding "true" optimal decisions for numerical induction models in general. 
Also, care should be exercised when making inferences about a method's rigour on the basis 
of result consistency, since they may be consistently bad. Another characteristic related to 
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consistency is "rank reversal", which means that the relative preference order of alternatives 
may be changed when a new alternative is added to the set of alternatives. Although there is 
an ongoing debate [77-80,85] about whether this feature necessarily debilitates a method, the 
significance of rank reversal is largely determined by the features of a problem, and how rank 
reversal is induced. In some cases it may represent non-linear human cognitive processes and 
thus be acceptable. In other cases, it may be an anomaly due to the details of a method and 
therefore it would add unwanted Level 3 U to the results. 
 
Generally speaking, the field under study is referred to as decision making under uncertainty, 
whereby uncertain information representing evaluations of different aspects of a complex 
problem is combined to make a global evaluation or choice. With the exclusion of probabilistic 
inferencing which is not the prime focus of this report, sometimes called decision making 
under risk, to date the majority of decision theory has addressed the elicitation and 
aggregation of information relating to human preferences. Characteristically, a 
mathematically oriented approach derived from traditional OR methods is applied to 
maximise mathematical functions of decision variables. Typical concepts used in this 
approach are subjective expected utility, marginal rate of return, partial derivatives of 
decision variables, the optimal decision space, multiple objective functions, and factor 
interdependency functions. However, such mathematical techniques frequently require 
substantive assumptions that can also mask some fundamental structural problems. In recent 
times, the adequacy of some popular methods has been questioned by several authors [12, 30, 
80, 81]. Furthermore, even after 50 years of decision theory development, the important 
question of tradeoff rationalisation has not really been adequately answered by this function-
based mathematical approach to decision analysis. Many solutions are based on exchange 
ratios [38] which are still subject to some structural difficulties arising from interdependencies. 
With the previous notions of French, a prescriptive approach to decision modelling combining 
descriptive analysis with normative methods, would seem to be the most prudent approach in 
general. This has been called a “syncretic” approach [96] where it is important to first 
understand the behavioural and information complexities existing in a problem (the 
descriptive part), before proposing a mathematical technique to address these features. 
 
Fundamentally, decision analysis techniques combine information elements which are 
evaluations or ratings associated with the various decomposed facets of a problem. Weights 
may also be applied to indicate such things as importance levels, reliabilities, or credibilities. 
The main stages of decision analysis are: problem definition by decomposition, facet 
evaluation, and finally information synthesis. Most decision models then apply hierarchical 
weighted aggregation using additive summation, or else, additive distance measures based on 
the Euclidean space assumption. Generally speaking, the problems that are suitable for this 
decompositional approach are high-level strategic problems. On the other hand, lower-level 
dynamic and interactive decision problems, as exemplified by military tactical decision 
problems which are highly time critical, do not in general fit the “divide and conquer” 
approach. A method which may be more suitable for that type of problem is the Naturalistic 
or Recognition-Primed Decision Making technique [48] which searches for a historical 
decision in a human knowledge-base of experience that approximates aspects of the current 
problem. Case-Based Reasoning is a branch of artificial intelligence that attempts to automate 
that approach. In contrast, the numerical induction approach described in this report for 
strategic decision making, initially requires careful consideration of the information inputs 
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and the implicit U forms present to maximise the meaning and value of the computed global 
metrics. 
 
This section will highlight the uncertainty forms and model misfits that can be found within 
some common approaches to complex decision analysis. But before describing some of these 
modelling difficulties, the manner by which decomposed decision information is rated before 
synthesis will be reviewed. This is an important consideration since the nature of the problem 
determines which rating methods are feasible, and certain options may also introduce 
structural uncertainties into the computations.  
 
6.2 Decision Element Evaluation Methods 

A complex decision is based upon the synthesis of component information related to the 
facets of the problem that have been defined to bound the description of the problem. The 
definition of the facets is a problem in itself, and may introduce Level 1 U due to a lack of 
consensus as to what the problem is, as well as Level 2 U as a lack of consensus on the set of 
facets that need be considered. It is assumed in this section that there is a consensus on the use 
of a numerical induction model so that Level 2 U relating to the choice of an analytic 
formalism is absent. Keeney [46] has identified the fact that different decompositions of the 
same problem can be derived from different viewpoints, or initial assumptions. He points out 
that if one starts with a range of alternative solutions, called Alternative-Based Thinking 
(ABT), a set of facets are derived which are highly dependent on the alternative set choice. A 
recent study [54] has also attested to this. On the other hand, if the problem is viewed in the 
light of some fundamental values that must be addressed by the solution, a different although 
probably overlapping set of facets may be derived. Keeney's Value-Focused Thinking (VFT) 
alerts us to the fact that ABT has historically been the dominant decomposition mode, 
although decisions are inexorably determined by the broad value system that underlies the 
problem. The following classification of evaluation methods will neglect this decision 
decomposition problem, and will assume that a meaningful and adequate set of facets, or 
problem attributes, has been initially agreed upon somehow. 
 
Facet values (x) and their respective importance weights (w) must be initially evaluated before 
the aggregation stage that develops global decision values. Figure 9 illustrates the possible 
ways that these fundamental elements of decision information may be evaluated and some of 
the potential dangers. These methods for evaluating measures for the decision elements are 
partially determined by the inherent nature of each facet, and it is important that the concepts 
associated with facets have a clear meaning. We will commence by defining two main 
categories of decision problem: the first category being selecting between alternatives, and the 
second category being the evaluation of a complex situation (i.e. only one alternative). 
Decision theoretics have evolved primarily to address the first category of evaluative decision 
analysis, in which facet ratings represent the facet value with respect to a decision maker’s 
value system. Consequently, how to model cognitive effects in human preference information 
has been a major thrust with this type of decision analysis. Also important is how to model the 
U forms in subjective ratings especially when they are multiply aggregated. For example, the 
importance of distinguishing between ambiguity and randomness in information elements 
has been highlighted [17,93].  
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Although both selection between alternatives and the evaluation of a single complex model 
may require human subjective evaluations, the evaluation of complex situations with diverse 
heterogeneous facets may include more objective behavioural measures as factor performance 
measures. These may be quantitative with units, or be normalised qualitative measures 
without units. The different types of input information between the two decision categories 
also gives rise to some different structural problems. For example, the meaning of weights in 
the model may be different: one being the relative importance of a facet, and the other being a 
value exchange rate as how much of one variable is equivalent in value to a unit of another.  
 
Rather than a tradeoff measure, a relative importance weight is a multiplier based on a 
proximity relationship that indicates the significance of one facet of a problem in relation to 
the higher-level concept in a model. The meaning of the facet measures themselves may also 
be different between the two types of application. For example, if the single complex problem 
being evaluated is military force “Reachback”, the diverse facet measures could be interpreted 
as performance measures (or degrees of achievement) in relation to predefined standards. 
This would be quite distinct to a subjective evaluation derived from a decision maker. Of 
course, both subjective and objective measures can coexist in a single model and need to be 
combined into a global measure. Depending on the nature of the facets, quantitative or 
qualitative measures (or both) may be appropriate for the ratings, and several types of rating 
method for evaluating decision elements will now be described. Figure 9 summarises these 
methods and the potential dangers associated with each of them. 
 
Quantitative Facet Variables 
When facets have a quantitative definition, ratings are usually quantitative measures of their 
properties with units. In these cases, objective behaviour rather than human opinion is usually 
the basis of measurement. The measures for different facets may be of similar units 
(homogeneous) or different units (non-homogeneous). A common variable with 
homogeneous units is "Cost". However, "Cost" may also have non-homogeneous units such as 
expected number of casualties in an operation or days to complete a mission. 
 
Aggregation of quantitative information with homogeneous units can be termed simple 
accounting aggregation. Consider, for example, the evaluation of the production revenue of a 
mining company division with gold and silver mines in different countries which have 
different tax requirements: XI = weight produced, and CI = value per weight. Then two levels 
of aggregation determine the revenue as the sum of the production weight in each mine by the 
international market value of unit weight by the percentage retained earnings after tax. With 
such accounting type aggregation the units of the quantitative weights (CI) must match the 
facet measures i.e. value silver (or gold) per unit weight and weight of silver (or gold). In this 
case the ratio of the importance weights (CI ) takes the meaning of exchange ratios i.e. ratio of 
gold and silver unit values. 
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 Figure 9:       Potential Dangers in Determining Measures for Model Elements 
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Alternatively, quantitative measures with homogeneous units may also be aggregated by 
using qualitative weights on the unit interval [0,1] without units, to represent relative 
importance (such as low, medium, high) and not be exchange ratios. For example, when facets 
represent the profit in different countries (and not the production weights) the qualitative 
weights may be linguistic measures to represent the retained earnings proportion after tax. In 
this case, the weights would be directly assigned for the different taxation rates, but for other 
problems the relative weights may need to be subjectively assigned by a decision maker using 
a facet comparison matrix. While there are no structural dangers in aggregation using directly 
assigned subjective measures for weights, there are potential dangers when using 
comparative evaluation techniques, especially with multi-level aggregation. This problem will 
be explained in more detail in Section 6.3.4.  
 
However, the magnitude of quantitative elements with homogeneous units, measurable by 
definition, may also be subjectively rated when they cannot be measured for some reason. For 
example, a five point linguistic scale (Low, MediumLow, Medium, MediumHigh, High) may 
be converted to numerical measures within [0,1]. In this case, based on their units, they could 
be aggregated with weights derived either quantitatively or qualitatively as shown in Figure 
9. 
 
Finally, aggregation of quantitative measures with non-homogeneous units simply requires the 
weighting constants to be in units that convert the facet measures to a common unit. For 
example: 
If the Total project cost =construction cost+over-run penalty cost+workers injury cost.  
Then # month over-run by $ penalty per month and similar injury conversion to costs, reduces 
all measure to $ cost. Thus, with non-homogeneous quantitative facet measures care must be 
taken to match the weight constant units to the facet measures. 
 
 For quantitative measures with non-homogeneous units, qualitative weights [0,1] should not 
be used to aggregate measures. 
 
Qualitative Facet Variables 
Certain models may require variables with an inherent qualitative meaning to be evaluated 
using measures [0,1] that describe positions on the unit interval relevant to some standards. 
Such measures reflect proximity distances on an interval scale, rather than quantifying a 
property (as on a ratio scale). Moreover, rating measures for qualitative facets need not be 
restricted to [0,1] and may also be fuzzy or approximate estimates. Measures for qualitative 
variables can be derived by human evaluation in three ways: by direct subjective assignment 
of measures, be derived indirectly by pairwise facet comparisons using some matrix 
evaluation technique, or by normalisation using a bounded value function. Related 
normalisation methods (N) will subsequently be described in more detail in Section 6.3.2. 
 
Then the importance weights for qualitative variables must be dimensionless numbers, and 
these may again be evaluated by human judgment directly as relative importance weights, or 
indirectly as exchange ratios by pairwise comparison ratings across facets (as depicted in 
Figure 9). Whenever multiplicative operations in matrix evaluation methods are applied, 
weights as exchange ratios are implied because the ratio scale interpretation with an absolute 
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zero must be adopted to allow multiplicative operations according to measurement scale 
constraints. 
 
The purpose of detailing the different ways that facets of a decision model may be rated,  and 
their importance weights evaluated, is to identify how uncertainty and anomalies may be 
unwittingly introduced by these rating methods. The various dangers or pitfalls associated 
with the different evaluation methods are itemised at the base of Figure 9. 
 
6.3 Some Theoretical Difficulties 

The theoretical implications of these different methods for rating facets and weights will now 
be described, plus some fundamental issues that can affect the adequacy of computations in a 
decision theoretic. These problems are implicit in many decision techniques and further 
descriptions of some of these dangers can be found in [12,66,85,97].  
 
6.3.1 The Meaning of Weights  

Level 1 uncertainty concerns the lack of agreement on the problem under study. Usually this 
refers to a large scale complex problem with many diverse and diffuse aspects as viewed by 
stakeholders with different experience, biases, and needs. However, this level of uncertainty 
can also be associated with the evaluation of decision factor weights. When decision analysis 
is considered as the weighted synthesis of elemental information, in this process the meaning 
of elemental weights is crucial since it can determine the validity of a computational method. 
There can be four (at least) interpretations of weights as follows: 
 

1. Exchange ratios between elements i.e. the quantitative worth of one unit of an element 
in terms of another (dependent on the units) 

2. Criteria satisfaction priorities. 
3. Relative importance values i.e. the significance of the information element or concept. 

This may be associated with the reliability, credibility, or validity of the information 
sources. 

4. Significance of a decision facet (factor) based on the divergence of that facet's ratings 
across alternatives; i.e. if all alternatives have similar ratings for that facet then it 
contributes little information for discriminating between alternatives. 

 
Interpretations 2 and 4 are less common than the other two. One approach to addressing 
interpretation 2 can be found in [47], while interpretation 4 may be implemented using the 
information entropy concept [43], or the degree of correlation between columns of the 
decision matrix [28]. Nevertheless, any of these interpretations, or their combinations, may 
appear in a decision model and one needs to consider how they should be reflected in 
computations. This point is discussed also by Barzilai [12].  
 
For quantitative variables with different units (as in Figure 9), weights in an aggregation 
function would be of the exchange rate meaning to convert the respective units to a common 
unit. However, for dimensionless qualitative variables without units, perhaps on the interval 
scale [0,1], the meaning of weights as “relative importance” is not so clear. Weights in this case 
could simply describe the significance of the elemental valuations based on the credibility or 
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reliability of their source. This interpretation imputes a degree (%) of belief meaning on a ratio 
scale (without any comparative meaning).  
 
However, a pairwise relative importance scale, for example the usual AHP scale {1,3,5,7,9}, 
can have three meanings: quantitative exchange rates, qualitative relative distances on an 
interval scale, or simply represent order. Which meaning is appropriate depends on the 
situation and it determines the admissible mathematical operations in the matrix evaluation 
method. If a technique uses multiplication or division then the relative importance measures 
should be ratio scale measures with an absolute zero (i.e. 9 = 9 times greater as for exchange 
rates, rather than 9 = extremely more important). In other words, the mathematical operations 
applied to matrix elements should be driven by the type of meaning a rater can embed in a 
measure. Barzilai [8] discusses the problem of deriving meaningful weights from a relative 
comparison matrix. Several techniques [7,68] have been proposed to address this particular 
problem, usually by comparing differences of facet measures as required for interval scales. 
However, the use of direct subjectively assigned individual weights on an interval scale (N1 in 
Figure 9) can avoid these computational limitations. Because of the problems associated with 
the meaning of weights and how to determine their values, some authors suggest that the use 
of weights should be avoided altogether. Two studies [26,35] that do attempt to compare 
multi-attribute weight measurement methods are largely inconclusive, concluding only that 
obtaining consistent estimates may be a function of the number of decision factors the 
decision maker has to simultaneously compare. Comprehensive discussions of many 
problems and dangers concerning the use of weights can be found in [5,66]. The main point is 
that an analyst should be aware of these dangers and the computational limitations of some 
techniques. 
 
6.3.2 Normalisation  Procedures    

In order to combine heterogeneous forms of information relating to fundamentally non-
commensurate facets, standardisation or normalisation is frequently used to convert 
dissimilar quantitative or qualitative ratings to dimensionless ratings on the unit interval [0,1]. 
For normalised measures to be aggregated they need to be on a similar scale with comparable 
units to comply with the aggregation axioms of Section 5.2.1. A detailed discussion of the 
problematic aspects associated with normalisation can also be found in [67]. Normalisation is 
essentially a re-scaling process transposing measures to a decimal interval scale. The sum of 
normal measures [0,1] need not necessarily be unity, and three types of normal measures (N1, 
N2, N3) that may be used for evaluating facets in decision analysis are identified in Figure 9 
with the following meanings. 
 
N1  =   Directly (subjectively) assigned numbers [0,1], e.g. {0.3,0.4,0.8,0.6,0.9} 
N2  =   Indirectly derived by converting an input quantitative measure via a bounded  

 value or preference function, e.g. conversion of above set where 0.4 = Min (0) and  
0.8 = Max (1), with a linear value function yields⇒{ 0, 0, 1, 0.5, 1}. 

N3  =   Indirectly derived from a mathematical function (such as Euclidean distance)  
which often requires some integral of the measures to equal unity. This can be 
called vector normalisation where each measure is divided by the same constant (K) to 
change the scale. N3 as used for comparison matrix synthesis at a single level of a 
decision model, causes no problems since the constant derived from that set of 
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measures has the same effect on each matrix factor and proximity relationships are 
thus coherent. For any set of measures the choice of the normalisation constant may be 
determined by the matrix evaluation method (e.g. arithmetic or geometric mean, or an 
eigenvalue). Alternatively, it may be an arbitrary choice such as the maximum or 
minimum. Certain normalisation constants are variants of the Generalised Mean 
Operator (also known as the Minkowski metric) :  

 
    Minkowski metric   K  =           (6) 

 
   

 q =  1:       City block measure      K  =  (7) 
 

 
 

 q =  2: Euclidean measure  K  =      (8) 
 

   
 

q =  n and 2:             K  =       (9) 
 
 
Potential N1 and N2 Normalisation Problems: 
Uncertainty may be introduced through N1 and N2 normalisation by means of the value 
function inherent in them, whether implicit or explicit. Thus, a decision analyst should be 
aware of the effect of the preference value function and ensure that it is appropriate if it can be 
made explicit.  
 
Potential N3 Normalisation Problems: 
The choice of a normalisation constant (associated with a matrix evaluation method for 
example) is another source of uncertainty. Certain decision theoretics are greatly influenced 
by the normalisation constant so uncertainty can be introduced when there is an arbitrary 
choice. (The use of Euclidean distance measures in the TOPSIS decision theoretic for example 
as will be described in Section 6.4.6.) Although the Cartesian space assumption with 
orthogonal axes is frequently adopted in multi-dimensional scaling, it could be asked why the 
facets of a military problem should be implicitly related in this way. Furthermore, the notion 
of a variable's (or a dimension's) separability [15,27] as applied in psychometric testing where 
most of multidimensional scaling theory was developed, is not necessarily transferable to 
military problems. Thus, there are many open questions [5,10,11,15,66] regarding the use of 
arbitrary N3 constants for normalisation, as well as the use of multi-dimensional scaling 
measures that are arbitrary in the sense that they are not determined by the problem [5]. It 
could also be argued from a descriptive modelling viewpoint, that it is better to use a method 
which avoids such measures if they cannot be justified. A common problem with N3 
normalisation is the summation of distance values (measures) that have been derived using 
different arbitrary constants (such as City block and Euclidean). Such aggregation is not 
adequate because the proximity relationships are effectively on scales with different units 
within [0,1] (discussed further in next section).  
 
Another more subtle problem (or uncertainty) that can be introduced by N3 normalisation 
occurs in hierarchical decision analysis models. Barzilai [10,11,13] has identified how multi-
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level weighted aggregation of utility or preference measures derived by N3 normalisation, can 
induce aggregation anomalies as well as the rank reversal problem. The problem is that 
preference measures are combined which are based on scales with different units due to their 
different normalisation constants derived from the different sets of measures at different 
hierarchical levels. By violating one of the aggregation axioms, global measures would then 
have depleted meaning. And although rank reversal can be explained by psychological factors 
in certain cases, when it is caused by a technical idiosyncrasy such as this it is hard to justify. 
More detailed analyses of the hierarchical aggregation problem can be found in [9-11].  
 
6.3.3 Measurement Scale Limitations  

The definition of a complex problem facet or attribute, together with the measurement scale 
used to quantify it, may intrinsically restrict the admissible range of mathematical operations 
allowed. The true nature of a scale being used may also be somewhat obscured by the use of 
qualitative evaluations or normalisation procedures. Mistaking an interval scale for a ratio 
scale is not uncommon. When operations are performed on numbers that violate the inherent 
limitations of that type of numerical scale an unnecessary form of U is introduced into the 
numerical induction process. The foundations of Measure Theory and measurement scale 
constraints are described in [9,15,70,84]. 
 
It is generally considered that there are four types of measurement scale: nominal (or 
categorical), ordinal, interval, and ratio scales. Nominal scales are not numerical but the other 
three are. Nominal scales simply define classes (crisp or fuzzy with overlap) to which 
information elements are assigned. For example, the weather is fine, cloudy or stormy. 
Nominal scales label objects (individual or group) and the only operation that can be 
performed on them is the substitution of labels. However, belief measures may also be 
attached to the assignments on nominal scales. Ordinal scales are used to describe the relative 
order (rank) of objects (>,<,=). They may be used to define complete crisp orderings or only 
partial orderings. Ordinal scales are frequently used in decision analysis and the full range of 
arithmetic operations are not admissible for ordinal scale measures. They are only invariant 
under mathematical transforms that are monotonic and order preserving.  
 
The third type of scale is an interval scale with an arbitrary zero point, where it is the 
difference between measures that is of significance. Interval scales embed information on rank 
order and equality of intervals, and are invariant under any affine transform, y = ax+b, of the 
true magnitude x with two arbitrary degrees of freedom ‘a’ and ‘b’. The two degrees of 
freedom for interval scales thus relate to the zero point, which is not an absolute zero but a 
relative datum point (b) from which to measure proximity distances, and the unit size (a). The 
Fahrenheit temperature scale is often used to illustrate an interval scale where it is meaningful 
to say today is 7.5 F hotter than yesterday. Although is sometimes said that all arithmetic 
operations can be applied to the intervals between interval scale measures, there are in fact 
some limitations on what operations can be applied to intervals between interval scale 
measures. If the interval scale measures refer to the same concept, and use the same scale unit, 
division of intervals is admissible. This has been identified [9] as the defining operation for an 
interval scale. While subtraction of one interval measure from another is also admissible, 
addition and multiplication of individual interval scale measures is in general not admissible. 
However, they can be averaged because the arbitrary zero point cancels out, as shown below. 
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SAV = datum (D) + average interval
(45-D) +(30-D) +(60-D)= D +

3
3D + (45+30+60)-3D

3
45 30 60

3
45

=

+ +
=

=

For example, the simple average (SAV) of three interval scale measures 45, 30 and 60, all with 
a common reference point or datum: 
 
 
 
 
 
 
 
 
 
 
 
 
Averaging may be either a compensatory weighted average or some non-compensatory 
technique (such as the Choquet Expected Value to model interdependencies when they are 
present). Interval scale measures are frequently encountered in decision analysis techniques as 
measures of utility or decision facet value. If the measures are based on a normalised scale 
[0,1] with a common understanding for the zero point, then the measures themselves 
represent intervals relative to the datum and may be summed. However, there is also some 
discussion in the literature [9,84] as to whether such a commonly agreed upon zero point can 
actually exist, as is implicit in the widely used method of summing subjective scores. Since 
averaging interval measures is admissible, because it is not dependent on the zero point, 
averaging of one type or other may be a more robust way to aggregate interval measures. 
 
The fourth type of scale is a ratio scale that has an absolute zero. Ratio scales are of the form 
y = ax, with one degree of freedom 'a' which determines the unit size. Physical properties such 
as distance and weight usually have natural zero points of the property. This enables the full 
range of arithmetic operations to be applied to such measures for determining area, volume, 
and so on. Thus ratios of ratio scale measures have a precise meaning and are unique. They 
can be interpreted as ratios of magnitudes of a property and are the most informative type of 
scale embedding information on rank order, interval equality, and equality of ratios.  
 
The most common example of scale misuse in decision analysis is to perform inadmissible 
multiplication when : 

• Measures are on ordinal scales. 
• Measures are on interval scales (often subjective ratings of a qualitative variable). 
 

Another technique that may also result in inadmissible operations is when linguistic or 
semantic scales are transformed to numerical measures. As numerical scales may be of 
different types, so may linguistic scales be also, according to the meaning associated with 
them. The particular scale type is then preserved on the numerical transformation. If only 
order is implied in the linguistic measures then the transposed numerical scale is ordinal with 
the previous restrictions on operations. An example of such a transposed ordinal scale for 
relative importance are in the AHP decision theoretic where {nil, low, medium, large, 
extremely large} is transposed to {1, 3, 5, 7, 9}. This scale transform yields ordinal numerical 
measures because a rating of 9 does not equal 3 times a rating of 3, nor do the intervals 
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between the numbers have any meaning. Only Max and Min operations and ordinal sorting 
should be performed on these numbers with no other arithmetic operations admissible. 
 
When the property a linguistic scale measures is a ratio scale concept with an absolute zero 
(e.g. length, probability, proportion), the numerical scale transform is also a ratio scale. For 
example, the “relative importance” concept in decision analysis may represent the degree (or 
proportion) of the factor itself that contributes to the aggregate of all factors. While there has 
been considerable discussion [13,82] about what relative importance means, if the meaning is 
taken to be the fraction of a factor that is aggregated into a global value due to its significance 
or proportional influence in the global picture, then it can be seen to be a ratio scale measure 
for which multiplication with interval scale preference measures is admissible. However, it 
should be noted that this is not the meaning of “relative importance” as used in the AHP, nor 
are they tradeoff weights in that technique. This is discussed in more detail in [92].  
 
When the numerical measures are normal [0,1] having been derived from some normalisation 
process with upper and lower bounds, they are by definition interval scale measures. For such 
normal measures the interval distances have meaning and the measures are subject to the 
computational limitations previously described. Normalised measures are frequently used for 
measuring decision maker preference or attribute utility, with values assigned in relation to 
the value system of the decision maker. And as previously noted, there are various questions 
concerning the commensurability of different interval scale measures which may affect the 
validity of their summation. Barzilai [9,11] has highlighted this problem and has proposed a 
new approach [7] for developing preference measures that are not affected by scale units. The 
aggregation of these measures across all independent decision factors can then be achieved 
because the problem of scale units is avoided. However, when there are interdependencies 
between component factors in a model, or between Barzilai’s relative preference measures at 
the model leaf nodes, some non-additive procedure is really required to synthesise those unit 
free measures into a global measure for comparing alternatives. As previously stated, the 
Choquet fuzzy integral is one such non-additive technique that may be appropriate. 
Furthermore, since individual interval scale measures without an absolute zero should not be 
summed, it is especially suitable for interval scale measures because it sums and averages 
measure intervals. 
 
In the previous section it was also described how normalisation procedures may result in the 
combination of measures with different scale units when: 
• Ratio scale measures for quantitative variables (for example, $ Cost) are N3 normalised 

using different normalisation constants.  
• Normalised measures derived by different methods are combined. For example, N3 

normalisation constants with a N2 bounded value function. 
 
A further example of scale misuse commonly occurs in Cost/Benefit/Risk analysis using 
normalised interval scale measures in division operations to form ratio measures. 
Alternatively, a non-additive technique may be a more appropriate method to synthesise 
these three normalised interval measures into a global measure for alternative comparisons 
because indeterminate interdependencies are usually present between costs, benefits, and 
risks. 
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Thus, in addition to the Level 6 U that may be intrinsic to a scale, Level 3 U concerning an 
inappropriate and inadmissible mathematical operation may also be unwittingly introduced. 
Also, several studies [55,56,61] have been made comparing the effect on the AHP method of 
using different measurement scale units. Unfortunately, these AHP scale studies assume that 
the input comparison matrix ratings are on a ratio-type scale, which they are not. For this 
reason, these results are of questionable merit. For example, 9 on Saaty's scale means that the 
numerator element is absolutely preferred to the denominator element, and does not mean 
that the numerator element is 9 times better than the denominator element. This problem has 
also been discussed by Stewart [85]. For these reasons, decision analysis computations should 
always be cognisant of the inherent limitations of the scales being used for the quantification 
of elemental variables or facets of the problem under study. Barzilai [9] discusses in detail 
how measurement fundamentals can affect preference evaluation, and other discussions of 
Measure Theory fundamentals including homomorphic relations and existence of uniqueness 
theorems can be found in [9,15,70,84]. As discussed in the introduction of this report, no 
output validation is possible for numerical induction models and no bells ring when 
operations are applied that exceed the information limitations of the inputs. To ensure that the 
output embeds the most information and meaning for the given inputs, the best the analyst 
can do is to accord with the computational constraints. 
 
6.3.4 Comparison Matrix Evaluation  

When a matrix of pairwise comparisons of decision facets by an expert is used in a decision 
theoretic, a number of techniques have been proposed to synthesise the matrix into a 
"priority" vector which establishes proximity measures on the unit interval [0,1]. (In this 
section we will ignore the previous scale limitation problem.)  These pairwise ratings may be 
for determining facet weights or facet/alternative decision values or preferences. The range of 
techniques available for matrix synthesis includes the right eigenvalue, geometric mean (row 
or column), harmonic mean (left eigenvalue), least squares, constant-sum, and simple row 
average. Although many comparative studies exist [8,26,27,28,35,61,63,68,78,81,104] there is 
little consensus as to the adequacy of those methods. Perhaps the most widely used method is 
that of the AHP right eigenvalue method. Saaty and Vargas [77] have claimed that their basis 
for selecting this technique is that it “preserves rank strongly” in the presence of rating 
inconsistencies. However, Barzilai [8] has also shown numerically that the left eigenvalue has 
exactly the same properties as the right eigenvalue thus yielding a different priority vector. 
Furthermore, it has also been demonstrated [8,35] that the geometric mean better satisfies 
fundamental consistency requirements for multiplicative matrices, while the arithmetic mean 
does so for pairwise additive matrices. When using the AHP for group decision making, Zhou 
[104] has compared various AHP variants and concluded that the technique for comparison 
matrix evaluation has less effect on the decision than the method for aggregating the ratings. 
Unfortunately, many of these results are compromised by the inherent problem of different 
normalisation constants in the hierarchical aggregation of preference values. 
 
In this way, U can be introduced into computations through an inadequate matrix evaluation 
method, and it is Level 4 U concerning computational micro-mechanisms in the U framework 
of this report. In order to minimise this kind of U, some reasonable justification is desirable for 
the adoption of a particular method for evaluating the matrix of comparative ratings, in 
relation to the type of scale used for the ratings. Overall, there is some doubt as to the validity 
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of many matrix evaluation methods because the measures are interpreted as ratio scale 
measures when the meaning of the decision factors and method of measuring induces interval 
scales.  
 
6.3.5 Decision Element Interdependencies  

As discussed in Section 4.3, interdependencies of several types may be present in a decision 
problem. When element ratings represent human preference evaluations, they are preference 
interdependencies. But if the element ratings are objective behavioural measures, or payoffs, 
they are generally called utility dependencies. For example, elements within a cost hierarchy 
of a complex project can also influence the ratings of the benefit and risk hierarchy elements. 
This type of interdependency is usually of an indeterminate degree because the cost elements 
do not totally determine the benefit and risk elements, since various design and intrinsic 
characteristics also contribute effects. Nevertheless, conventional Cost/Benefit/Risk analysis 
often combines the three individual global values using additive operators as if the hierarchies 
were independent. Usually such relationships are qualitative in nature and cannot be 
accurately quantified nor expressed in mathematical expressions. But besides facet value 
interdependencies, facet importance weights may also be subject to interdependencies. When 
they are subjectively determined they are preference dependencies. But they may also be due 
to some non-preferential endogenous characteristics such as reliabilities or credibilities. In 
general, interdependencies between importance weights are also difficult to quantify since 
they are usually assigned qualitative ratings in strategic decision problems. Dependencies of 
any kind may also exist between only a small subset of facets within a model. In these cases a 
multi-tier model (as in Figure 6) may enable these links, which may cross different levels of 
abstraction, to be clearly identified so that they can be addressed appropriately in 
computational methods. Another approach to representing interdependencies is to use a 
planar graphic network model. Saaty [76] adopts such a model in his recent Analytic Network 
Process (ANP) for decision making with interdependencies. However, like the AHP, the ANP 
is also debilitated by measurement scale issues. 
 
The following example will be used to illustrate how different levels of interdependency may 
be present. Consider, the computation of a global performance measure to monitor the state of 
a military campaign. For simplicity, let this evaluative model have four main components: 
Blue Cost, Blue Gains, Blue Losses, and Blue Combatant State. For simplicity it is assumed 
that no Red state information is available. The integration of these four major aspects can be 
viewed as a complex bubble representing the interactions between these four variables. Also, 
while global Costs may be evaluated using an accounting type tree hierarchy, 
interdependencies would exist within the other three variables. For example, if the Blue 
Combatant State is evaluated from the ratings of ten behavioural characteristics, the observed 
behavioural facets may be conditionally independent of each other but they may be associated 
via the meta-variable of group morale. So the method of synthesising the ten different 
behavioural ratings, which may themselves be heterogeneous types of measures, should 
capture such associative dependencies in the global Combatant State value. Also, the amount 
of Blue Gain may be related to the amount of Blue Loss, so the overall campaign state value 
should be based on a procedure that is cognisant of the interdependencies between Gains, 
Losses, Combatant State, and Costs. 
 



 
DSTO-TR-1895 

 
35 

In general, the conventional mathematical approach to resolving interdependencies in 
numerical induction requires the development of expressions or objective equations which 
require explicit dependency relationships. Carlsson and Fuller [22] adopt this approach (see 
Figure 8). Multi-objective programming, such as goal or compromise programming, is also 
used to capture the tradeoffs caused by objective interdependencies. However, such 
mathematical approaches, including the connectionist ANP technique, cannot address the 
vague interdependency forms that usually exist in data-sparse and abstract strategic decision 
problems. All forms of interdependency effectively introduce non-linearity into the process of 
information aggregation, and thus require non-additive and non-compensatory techniques. 
Uncertainty that may be introduced into global decision variables when an inadequate 
dependency modelling process is used is termed Level 3 U in the framework of this report. 
That level refers to the adequacy of the general computational macrostructure with respect to 
invalid aggregation procedures or methods that do not fit the characteristics of the problem.  
 
6.3.6 Tradeoff Rationalisation   

Tradeoffs between multiple objectives are a common feature of complex problems which need 
to be rationalised in information synthesis. When a mathematical formulation of a problem is 
possible with objective functions and constraints, optimal decision theory can be applied to 
determine values of variables that yield optimal payoffs. But information sparse discrete 
decision analysis problems should be treated in a non-optimal manner, more like Simon’s 
“satisficing” concept to find good-enough choices which satisfy minimal aspiration levels, or 
else the best of a set of alternatives (Pareto optimal). How to rationalise tradeoffs in decision 
analysis techniques has been a vexing question for many years and a recent treatise [38] by 
some seminal thinkers in the field (Hammond, Keeney, and Raiffa) illustrates the difficulty of 
the problem.  
 
The approach recommended in that recent treatise progressively deletes dominated solutions 
by modifying the measures for individual objectives or criteria, one at a time adjusted 
according their weights (as exchange ratios in this case), until a single non-dominated 
alternative is forced to appear. This is achieved by first determining the change necessary to 
cancel out one objective (or criterion) and then by determining what change in another 
objective (or criterion) would compensate for that change. In this manner, dominated 
alternatives are eliminated until only one remains which is taken to be the best solution. The 
flaw in this approach is that with systemic inter-related information, individual measures 
cannot be separately adjusted because a change in one measure can result in unknown 
changes elsewhere in the system of measures due to interdependencies. In other words, this 
approach only works for strictly independent sets of criteria ratings. And since strategic 
decision problems are invariably described by sets of systemic information with associative, if 
not causal interdependencies, the approach is inappropriate.  
 
Adopting another approach, if the multiple objectives and their components are considered as 
a system, measures may be integrated upwards factoring in their mutual disparities as 
previously described. In this manner tradeoffs between global decision variables are 
rationalised on the basis of their consistency because divergent low values represent windows 
of fallibility in system models. Elemental weights in such models may be reliabilities, element 
importances, or information credibilities. Uncertainty introduced by an inadequate tradeoff 
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modelling method can be viewed as Level 3 U, which again refers to the computational 
macrostructure features. 
 
6.4 Uncertainties within Some Popular Decision Theoretics 

The primary objective of this section is to highlight the manner by which the previously 
described structural uncertainties (the Levels of U) may be tacitly present in some widely used 
decision analysis methods. Only a brief overview of these methodologies will be used to 
describe where the different types of U are present, and the details and full descriptions of 
these decision theoretics can be found in texts such as [1,31,33,40,42,45,62,87,94,100].  
 
6.4.1 Multi-Attribute Utility Theory (MAUT) 

This is a major school, dominant in the US, which assumes a decision problem can be 
modelled by a real valued function that can be maximised between alternatives. Some authors 
[94] have suggested that MAUT has two variants: the Harvard school of Keeney and Raiffa 
[45], and the Stanford school of Howard [40,41]. A key difference between them is that in the 
Stanford school it is not necessary to compute a global measure to make a decision. In 1947 
von Neumann and Morganstern [89] axiomatised expected utility theory and thus laid the 
foundations of MAUT, as applied to econometrics. Accordingly, the expected utility of an 
alternative course of action was taken to be the weighted average of the component utilities, 
using additive aggregation where the weights were the probabilities of component outcomes. 
But over the years, beginning with Allais [2,3] and the Ellsberg phenomenon [32], there has 
been criticism on the simple weighted aggregation mechanism used to determine the expected 
utility. (A comprehensive summary of various issues concerning the interpretation and 
application of MAUT can be found in [31].) In short, there may be problems where non-
additive aggregation is more appropriate, either due to the human decision process or 
preference idiosyncrasies, or due to interdependencies between different facets of the 
problem. In general, facets of the problem in MAUT are evaluated and converted to a scale 
that is assumed to have common or commensurate units, sometimes called “utils”. However, 
as discussed in Section 6.3.3, on measurement scales, some doubt exists about the validity of 
this assumption. At other times, Utility functions may be based on probabilistic risk lotteries 
and synthesised by simple weighted aggregation of values. Defined value functions then 
convert facet ratings to utility measures. The problem of weight determination is inherent in 
MAUT, and when weights are derived from comparison matrices uncertainty may be 
introduced via the matrix evaluation technique, as well as via hierarchical weighted 
aggregation due to the multi-level normalisation problem. A collection of recent literature 
pertaining to utility theory can be found in [6] and overall MAUT is vulnerable to Levels 3 
and 4 uncertainty. 
 
6.4.2 Multi Criteria Decision Making (MCDM) 

MCDM is a collection of techniques that differ somewhat from classical utility decision theory. 
Zeleny [100-103] was a key figure in the development of MCDM and placed emphasis on how 
to match mathematical methods to the human cognitive process. However, the term "MCDM" 
is on occasion also used to describe the whole field of “divide and conquer” decision 
modelling, and to describe any method using rating or scoring of a list of criteria. At other 
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times MCDM is used to refer to relative preference modelling through comparison matrices. 
So MCDM may be somewhat broader than MAUT, embracing a potentially wider range of 
mathematical techniques. An early proposal of MCDM was interactive multiple criteria 
programming, for situations where a decision maker can only evaluate weights or factor 
ratings when confronted with a dynamic problem. In general MCDM is open to the same 
dangers as MAUT, perhaps with a greater emphasis on the problems associated with 
comparison matrix evaluation: the meaning of the comparisons, the use of a scale without an 
absolute zero, and the matrix evaluation technique. In addition, the danger of multi-level 
normalisation anomalies is also present. Thus MCDM is also exposed to a broad range of 
Level 3 and 4 U forms.  
 
6.4.3 The Analytic Hierarchy Process (AHP) 

This is a popular version of MCDM (or some would say MAUT) with a user-friendly software 
implementation called Expert Choice. The method [74,75] is founded on the evaluation of 
pairwise comparison matrices and unnecessary U is introduced into the matrix evaluation in 
two ways. Firstly, ordinal input ratings are interpreted as ratio scale measures and subjected 
to inadmissible multiplication operations in the eigenvector evaluation technique. Secondly, 
the priorities are determined from the right-hand eigenvector associated with the maximum 
eigenvalue without any sound justification for doing so (the justification given that it averages 
out inconsistent ratings and so preserves the true rank order being questionable). 
Furthermore, anomalies in hierarchical aggregation are introduced by combining normalised 
measures derived using different normalising constants, and hence being based on scales of 
different units. A detailed analysis of the various structural problems within AHP can be 
found in [7-13,30,50,67,78,80,81,88,92]. Overall, very significant combinations of Level 2, 3, and 
4 U are present in an AHP application and the method should be used with caution. 
 
6.4.4 The European School of Outranking 

The history and key features of this school are described in [72,73]. Many of its methods, as 
exemplified in ELECTRE [71], try to avoid any precise conclusions in an effort to model the 
inherent vagueness in subjective ratings, and the impossibility of computing a "true" decision 
value (or utility) for an alternative. The methods are largely based on partial ordering of 
preferences (since they are only rough estimates anyway) rather than the crisp dominance 
concept. Given a set of alternatives and the decision facets, the method reduces the non-
dominated set of alternatives using a “concordance” index to measure the relative advantage 
of an alternative, and a “discordance” index to measure its relative disadvantage. These act as 
distance measures and an outranking algorithm produces a “kernal” (a subset or shortlist) of 
alternatives which overall are approximately the same. The decision maker must then decide 
what extra information is required to select between them. The outranking algorithm is 
complex and sensitive to arbitrary parameters. Additionally, weights must initially be input 
by the decision maker so it may be open to the weaknesses of comparative matrix methods. 
Overall, the complexity of the technique introduces various forms of Level 2, 3, and 4 U in the 
attempt to capture the vagueness in the decision analysis process.  
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6.4.5 The Russian School  (ZAPROS) 

The ZAPROS technique, developed by Larichev and Moshkovich [51,52] uses qualitative 
evaluations by the decision maker to develop partial orders on possibly large sets of 
alternatives. The method is said to address the difficulty humans have to express preferences 
consistently, especially over large sets. To simplify preference elicitation, the decision maker 
only chooses between two alternatives differing in one criterion only. Preference 
independence is assumed across facet values and pairwise comparisons are elicited. Like 
Outranking, the method provides only a partial rank order and does not guarantee a complete 
rank-ordering. The key notion of this method is the concept of a joint ordinal scale developed 
from the input preferences of the decision maker from the micro-comparisons based on a 
predefined categorical scale. The method is relatively robust for non-systemic sets of 
information, has good transitivity control, and minimises judgment problems with large sets. 
When applied to systemic information problems with interdependencies, in addition to Levels 
3 and 4 U, it is less robust with extra susceptibility to Level 5 U in evidence quality.  
 
6.4.6 TOPSIS 

TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) is a method [42] 
based on the notion that the preferred alternative should have the shortest distance from a 
hypothetical ideal solution, plus the greatest distance from the worst hypothetical solution, 
assuming Euclidean space distance measures. The decision matrix is first normalised by 
dividing by a different constant (similar to root mean square) for each column. This 
normalised matrix is multiplied by input subjective weights for each column (criteria). The 
best and worst values are selected from each column to yield the ideal and negative-ideal 
solutions. Then for each alternative (row) a separation measure is computed from these two 
vectors assuming Cartesian space. The final ranking is based on a decision metric (the 
“Closeness” measure) that is a function of both separation measures. The results of TOPSIS 
are conditioned by the normalisation method and the Cartesian space assumption, which is 
Level 3 U concerning macro-computational uncertainty. Level 4 U variants are also present 
due to the different normalising constants between columns which means that measures of 
different units are combined. Furthermore, the manner of incorporating weights is inadequate 
because they are squared in the distance from ideal evaluation which distorts their intended 
meaning. Thus, this popular technique has considerable Level 3 and 4 forms of uncertainty. 
 
6.5 Section Summary 

This section has discussed some fundamental types of uncertainty that may inadvertently 
enter decision analysis computations and affect results. The vulnerability of some well-known 
decision analysis techniques to these uncertainties has also been described in very broad 
terms. Some of these decision analysis techniques, as exemplified by the AHP, are especially 
susceptible to a variety of these fundamental types of uncertainty. And unfortunately, the 
popularity of a particular method or its widespread use does not necessarily indicate the 
adequacy or validity of the method. Consequently, the output of many decision analysis 
techniques should be treated with some caution, or at least be cross-validated with other 
approaches. No method is always the best from the uncertainty viewpoint. Moreover, the 
need for a keen appraisal of the characteristics of input information to a model has been 
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stressed before selecting a suitable decision analysis technique. Such a preliminary 
information analysis should also examine the relative merits of different analytical formalisms 
such as choosing between probabilistic models with a priori conditional probabilities, or 
numerical induction models with subjective ratings.  
 
Four stages in modelling complex decisions have been identified: 
 
• Identifying the component considerations (facets, factors, or attributes) 
• Identifying any inter-relationships that may exist between the components. 
• Evaluating and determining performance measures for component factors (preference or 

utility measures) and their importance weights (if any). 
• Aggregating the component evaluations into a global decision measure by numerical 

induction, or into a global preference order of alternatives by other methods. 
 
Uncertainty may be introduced in the first stage when important component factors are not 
identified. The second stage may result in a model that may be hierarchical with independent 
factors, or multi-tier with interdependent factors, or a flat planar network of factors. 
Uncertainty is introduced at this stage when a problem is inadequately conceptualised and the 
model does not capture some important inter-relationships existing between components. 
Uncertainties may be introduced in the last two stages through invalid computational 
procedures. Very often in numerical induction procedures the fourth stage of aggregating 
component measures is performed using additive weighted hierarchical aggregation. Apart 
from the problem of multi-level aggregation of measures that have been derived using 
different normalising constants (as discussed in Section 6.3.2), hierarchical aggregation is 
considered to be unsuitable for many strategic decision problems because of ubiquitous 
interdependencies between strategic type factors.  
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7. Defence Decision Analysis 

The identification of unnecessary uncertainty forms that may be intrinsic in the structure of a 
decision model and the computational techniques applied, can have relevance to the analysis 
of some complex Defence problems as will be described below.  
 
7.1 Avoidance of Less Robust Decision Analysis Techniques 

The definition of six levels of U in structured decision models and their computational 
methods can facilitate the identification of potential weaknesses in a decision analysis 
technique. With a greater awareness of the multiple dimensions of U in a technique less robust 
methods may then be avoided. Moreover, models which suit the actual characteristics of the 
problem more closely may then be developed, such as capturing any elemental 
interdependencies. 
 
7.2 Performance Evaluation of Complex System Models 

Several types of military decision analysis can be classed as performance evaluation of 
complex systems where there are diverse non-homogeneous aspects that are loosely coupled, 
and the objective is to develop an overall meta-measure for the system behaviour. Three 
examples of such problems will now be briefly described. 
 
7.2.1 Assessment of Military Operations 

The traditional way to evaluate a military operation is to use predefined Measures of 
Effectiveness (MOEs) for each task or activity in the overall plan. Field reports are then rated 
against these MOEs to determine whether the objectives of the task have been achieved. 
Quantitative and qualitative aspects usually need to be considered conjointly such as tangible 
gains/losses and risk and morale aspects. In some military operations assessment systems 
lower tactical assessments are then hierarchically aggregated to evaluate higher-level 
objectives. One problem with using predefined MOEs in this way is that it assumes perfect 
foresight whereby the totality of  associated effects is known. The weakness here is that not all 
consequent effects can be captured in a relatively small number of MOEs, plus unforeseen 
negative effects may occur which need to be considered that are completely different to any 
predefined MOEs. Thus, MOEs alone often may not describe clearly the degree to which 
objectives are being achieved, unless it is a very clear-cut and simple tangible objective. 
 
To address this weakness of using MOEs in the traditional manner, assessment within the 
effects-based operations (EBO) concept should take a somewhat broader approach. With this 
approach tasks are linked to desired effects but the assessment of achievements is based upon 
the aggregate capture of all effects that can be linked to an implemented task and its 
objectives. Thus, field reports would capture a broader range of effects in the global domain 
including negative effects plus effects at different levels of detail and importance. In this way, 
assessment is based on a broader spectrum of reports which may even have global reach, 
rather than being limited to military aspects in one particular area of operation.  
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The problem that then confronts the EBO approach is how to synthesise these diverse 
assessments, positive and negative, important and not-so-important, into assessments of 
objectives achievement across different levels, from tactical objectives through to strategic and 
national objectives. This problem can also be viewed as performance evaluation of a complex 
system with loosely coupled elements, and numerical induction models could be applied with 
evidence integrated using an algorithm based on the Choquet integral to address the 
elemental interdependencies. Currently, investigations are progressing in Command and 
Control Division to apply this methodology for the assessment of military operations in a 
prototype tool called Plan Monitor. Further discussion of some the difficulties facing the 
development of military expert systems for threat assessment based on numerical induction 
models using elemental assessments, can also be found in [69].  
 
Non-military organisational performance evaluation models, such as the Balanced Scorecard 
method [23,44], may also involve loose couplings again presenting aggregation difficulties 
both within and between measure quadrants or categories. There is little doubt that it is 
beneficial to develop measures for a diverse range of facets of a complex system or 
organisation, and not to base decisions solely on a limited range of considerations such as 
costs, profits, or some equivalent military variable such as relative attrition rates. However, 
improvements in one facet, or group of facets, may be linked with deterioration or low values 
of other facets. Thus, measures should only be evaluated in isolation if they are independent. In 
general, it would be better to base any cognitive interpretation of a set of inter-related 
systemic measures on an integrated meta-measure. Unfortunately, these complexities are 
seldom addressed in organisational performance evaluation systems (such as the Balanced 
Scorecard), and evaluation of category measures in isolation with simple weighted addition 
for measure synthesis seems to be the de facto standard. 
 
7.2.2 Vulnerability Assessment of Complex Architectures 

For national infrastructure protection, assessment of the vulnerability of complex 
infrastructural architectures is required. Such architectures include supply grids for 
telecommunications, electricity, gas, water and transportation. This supply network is also 
composed of physical, human and functional process elements, any of which may present 
windows of opportunity for attack. Furthermore, these various supply networks may be inter-
related and their performance also may be influenced by factors beyond national control such 
as international conflicts, oil prices, or even catastrophic weather events. All of this 
complicates the assessment of national infrastructure vulnerabilities.  
 
In the past the reliability or vulnerability of large socio-technical systems has frequently been 
evaluated by the Fault Tree technique of systems engineering. However, that technique is also 
limited when there are interdependencies within and between systems. To address 
vulnerability assessment of very large complex systems, numerical induction models may also 
be applied to develop meta-measures for the different types of system- the technical, human, 
and process systems. By applying a multi-tier model to represent the complex system (as in 
Figure 6), aggregate measures could then be successively developed using the Choquet 
integral to address the loosely coupled features of the system. 
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7.2.3 Evaluation of Future Capability Requirements 

The planning and analysis of future military capability requirements may also be treated as a 
complex system evaluation problem. Initially the range of feasible future threats would need 
to be assessed from the whole field of possibilities. Next the range of potential capabilities that 
could feasibly be brought on-line would need to be identified. When selecting the set of 
capabilities to be acquired in relation to current assets, various types of functional 
interdependencies, synergies and redundancies would also need to be assessed. Then for each 
feasible capability, a Cost, Benefit and Risk analysis would ideally be performed considering 
the various strengths and weaknesses. Overall, this is another complex system evaluation 
problem due to couplings between different aspects, as between future capabilities themselves 
in relation to the range of feasible threats. 
 
Undoubtedly, however, the rapid change of military system technologies combined with a 
changing threat spectrum does make analysis for long-term capability planning very 
challenging. 
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8. Conclusions 
 
Decisions concerning complex strategic type problems are often made in an ad hoc or intuitive 
manner based solely on the experience of the top-level decision maker. While this may be 
completely appropriate in some situations, it may not always be advisable to make such 
unauditable decisions. Some examples of such strategic decisions include complex project 
evaluations, sensitive facility site selection, tender evaluations, company mergers or 
takeovers, and Defence capability development decisions. Political considerations may also be 
of paramount importance and can absolutely determine a decision. One step beyond the 
intuitive or political type of decision making is to use relatively simple methods to score 
component factors and payoff expectations. A further step upward in formal rigour is to 
apply a more complex structured decision model to ensure that all important aspects and 
viewpoints have been considered, including risks, and also to achieve greater consistency 
when component evaluations are integrated to enable the overall comparison of decision 
alternatives.  
 
Structured cognitive models that synthesise component evaluations into global measures for 
decision making have been termed numerical induction models in this report. It is 
fundamental that the results of this kind of model cannot generally be validated. Using a 
framework consisting of six levels of modelling uncertainty, this report has described a range 
of considerations and pitfalls that can influence the quality and meaningfulness of a 
structured decision model’s output. Various structural issues of numerical induction models 
have been described, covering both the type of cognitive model selected and the type of 
information aggregation mechanism applied. In isolation many of the problems associated 
with the described issues may seem to be unimportant, not particularly significant, and too 
basic to be concerned about. However, when a number of these considerations combine in a 
model they can have a significant impact on the quality of a model’s output. For this reason, 
the objective of this report was to make analysts aware of implicit assumptions and 
computational limitations that can influence the quality and hence the credibility of the 
outputs of models that are used for strategic decision analysis. A selection of some popular 
decision analysis techniques has also been presented and a variety of the described structural 
issues identified in each of them. 
 
Therefore, before selecting or formulating a model, it may pay dividends to take a careful look 
at the characteristics of the problem and the available information inputs. With a closer  model 
fit, more knowledge may then be extracted by the modelling process. The following words of 
Pomerol and Barba-Romero [66: p.6] illustrate this viewpoint:  
 
 "Multicriterion decision making can now be considered as a field of activity in which practical 
application and informatics are dominant. Theoretical research is not of course devoid of interest, but it 
is now more concerned with giving depth to existing ideas than in innovating. On the other hand, the 
possibilities of informatics have not yet been wholly explored; we may even say that application of 
multicriterion methods in professional contexts has only just begun."  
 
In this quotation "informatics" can be taken to mean computerised information representation 
and processing methods, and what is described is a fresh approach to decision analysis (i.e. 
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“giving depth to existing methods”) which aims to minimise unnecessary uncertainty 
introduced by overly complex computational techniques. Instead, the modelling process 
should be driven by the information forms that are actually available in relation to any 
complexities that exist, such as interdependencies.  
 
Although this report has focused specifically on numerical induction models, many of the 
issues and complications described are also present in other types of conceptual models. 
Therefore paying heed to the introduction of unnecessary uncertainty is an attitude that may 
have broad benefits for the Operations Research community in general. In recent times it has 
also been emphasised that Defence analysis should focus more on benefits in relation to costs 
and risks, not only for platform replacement and capability development, but also to justify 
other types of change. It is just for this type of analysis that numerical induction models may 
be applied, and where the model outputs may possibly be compromised due to uncertainty 
that is unnecessarily injected into the results. 
 
In conclusion, the following recommendations are offered to assist when selecting a numerical 
induction technique to minimise the introduction of unnecessary uncertainty through invalid 
operations and excessive assumptions. 
 
For numerical induction models which elicit preference judgments from experts, as well as 
determining measures from any objective data that is available, the Preference Function 
Method of Barzilai is a particularly robust and theoretically sound method for determining the 
individual preference measures for the leaf node elements of the model. And when the leaf-
node factors are preferentially independent, this method is also adequate for aggregating the 
individual leaf-node measures into global meta-measures for comparison of alternatives.  
 
However, when interdependencies exist between leaf-node factors some non-additive 
approach, such as one that uses the Choquet integral, may be more suitable for aggregating 
the component leaf node measures as determined by the Preference Function Method into 
global meta-measures for choosing between alternatives. At present, the application of such a 
non-additive information aggregation technique is being investigated for use in decision aids 
to support the planning and monitoring of effects-based operations. Moreover, a wide range 
of Defence applications potentially exists for analysis by numerical induction models, 
especially in the general field of capability planning. 
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